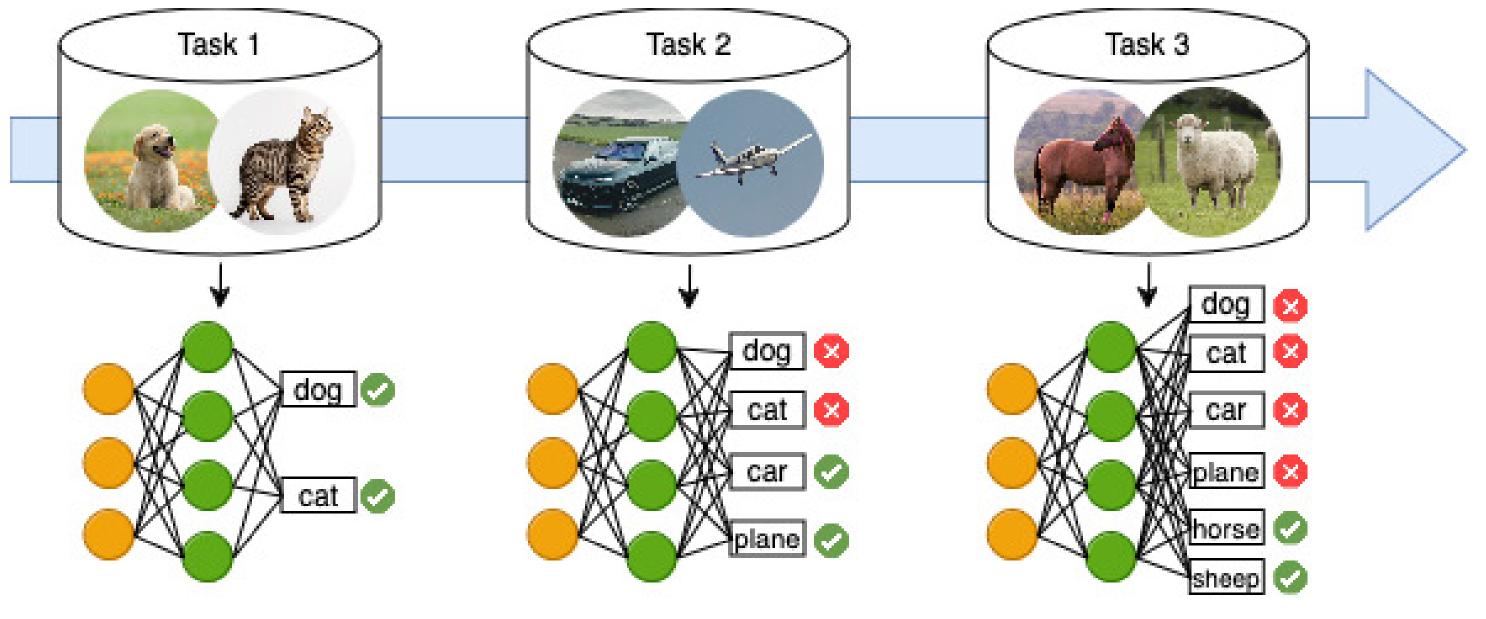


CONTEXT

- In real-life situations, ML models need to learn continuously from non-stationary data.
- Human learning is adaptive, ongoing, and expands on previous knowledge.
- Current DNNs are learned in batches, requiring huge amount of data to retrain with new classes.
- Challenge: **Catastrophic forgetting (CF)** problem.



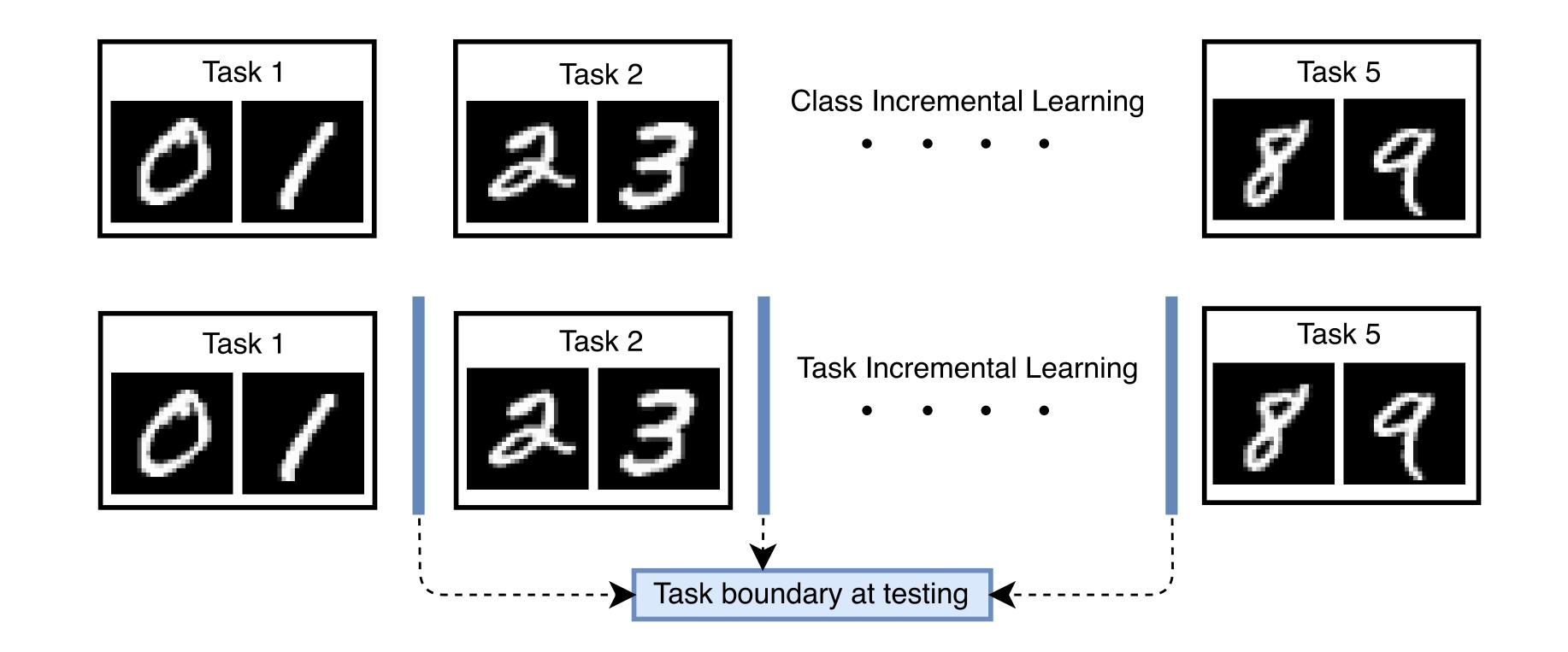
• Models need to consider memory systems trade-off between storing old knowledge and a quiring new one.

RELATED WORKS

Current prevalent approaches:

- **Regularization-based** (e.g.: Knowledge Distillation (KD)): Force the current model's parameters to be sufficiently close to the past model.
- **Replay or rehearsal based**: A small portion of previous seen samples are stored and mixed with current data

Different scenarios: Task-IL, Domain-IL, Class-IL, Data-IL



- In some settings, existing task boundaries can be provided or not to the model during training/test time.
- The construction of splits between tasks depends on different scenario.

REFERENCES

- [1] P. Buzzega, M. Boschini, A. Porrello, D. Abati, and S. Calderara. "Dark Experience for General Continual Learning: a Strong, Simple Baseline". NeurIPS. 2020.
- [2] H. Cha, J. Lee, and J. Shin. "Co2L: Contrastive Continual Learning". *ICCV*. 2021.
- [3] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. "iCaRL: Incremental Classifier and Representation Learning". CVPR. 2017.
- [4] R. Tiwari, K. Killamsetty, R. Iyer, and P. Shenoy. "GCR: Gradient Coreset Based Replay Buffer Selection For Continual Learning". CVPR. 2022.
- [5] Y. Wen, Z. Tan, K. Zheng, C. Xie, and W. Huang. "Provable Contrastive Continual Learning". ICML. 2024.

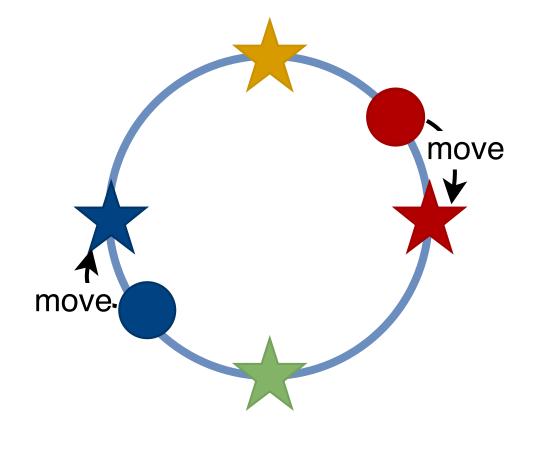
MEMORY-EFFICIENT CONTINUAL LEARNING WITH NEURAL COLLAPSE CONTRASTIVE TRUNG-ANH DANG¹, VINCENT NGUYEN¹, NGOC-SON VU², CHRISTEL VRAIN¹ ¹Université d'Orléans, INSA CVL, LIFO UR 4022, Orléans, France

PRELIMINARIES

• Supervised Contrastive Learning: Learning objectives tending to maximize similarity between representations of same-class samples while minimizing similarity between differentclass samples.

$$\mathcal{L}_{SupCon} = \sum_{i=1}^{2N} \frac{-1}{|P(i)|} \sum_{j \in P(i)} \log\left(\frac{e^{\langle \mathbf{z}_i \cdot \mathbf{z}_j \rangle / \tau}}{\sum_{\substack{k=1 \ k \neq i}}^{2N} e^{\langle \mathbf{z}_i \cdot \mathbf{z}_k \rangle / \tau}}\right)$$
(1)

• Neural Collapse: Behaviour of last layer features that collapse to their class means, aligned with a simplex equiangular tight frame (ETF).



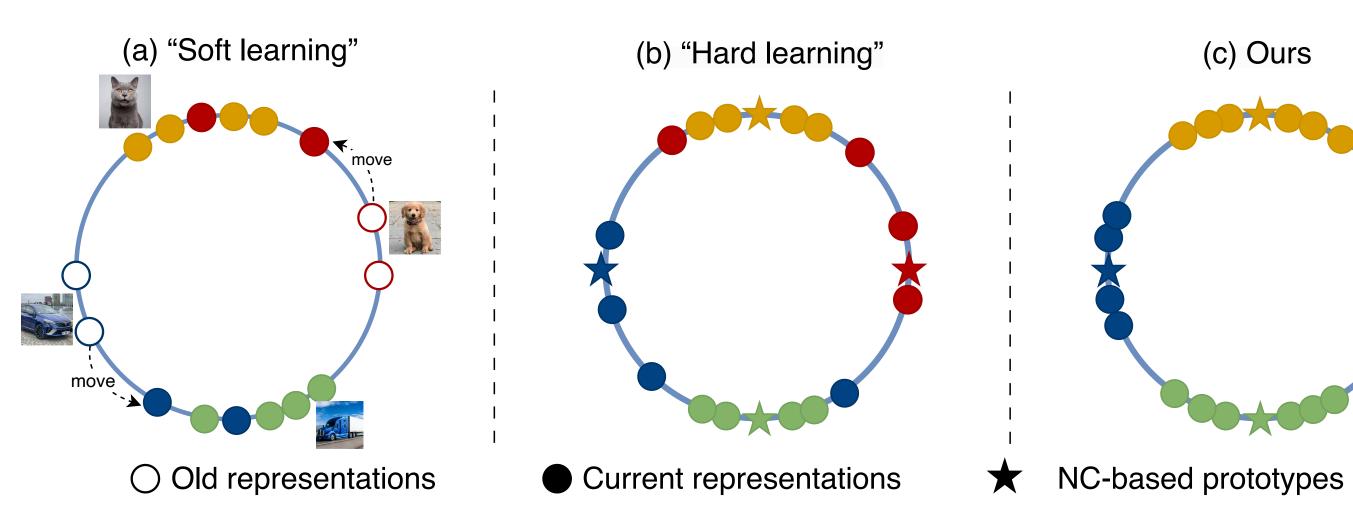
Representations tend to move towards prototype corresponding to their class.

(c) Ours

HARD LEARNING & SOFT LEARNING

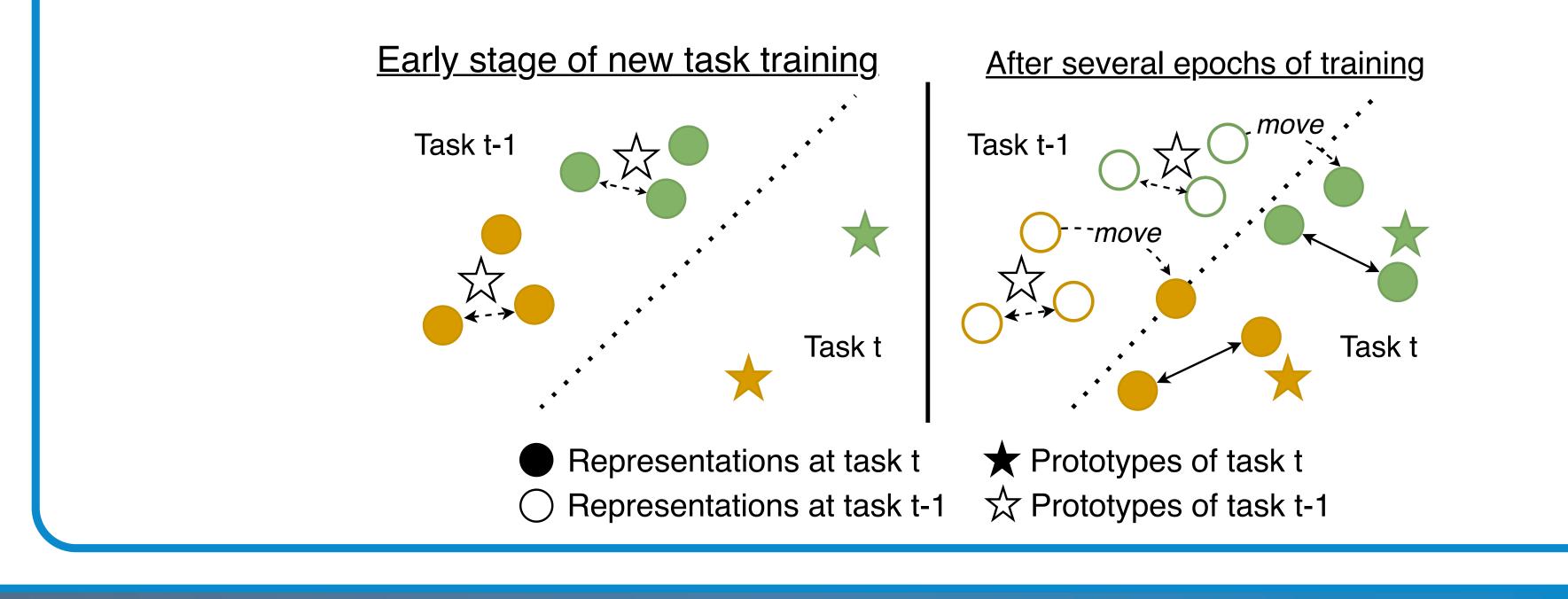
In learning new tasks:

- "Soft" learning relies solely on inter-sample relationships, which lead to representation drift and overlap with new tasks.
- "Hard" learning focuses only on sample-prototype relationships, which can reduce diversity, disrupt within-class data distribution, and lead to forgetting as older representations shift towards current task prototypes.



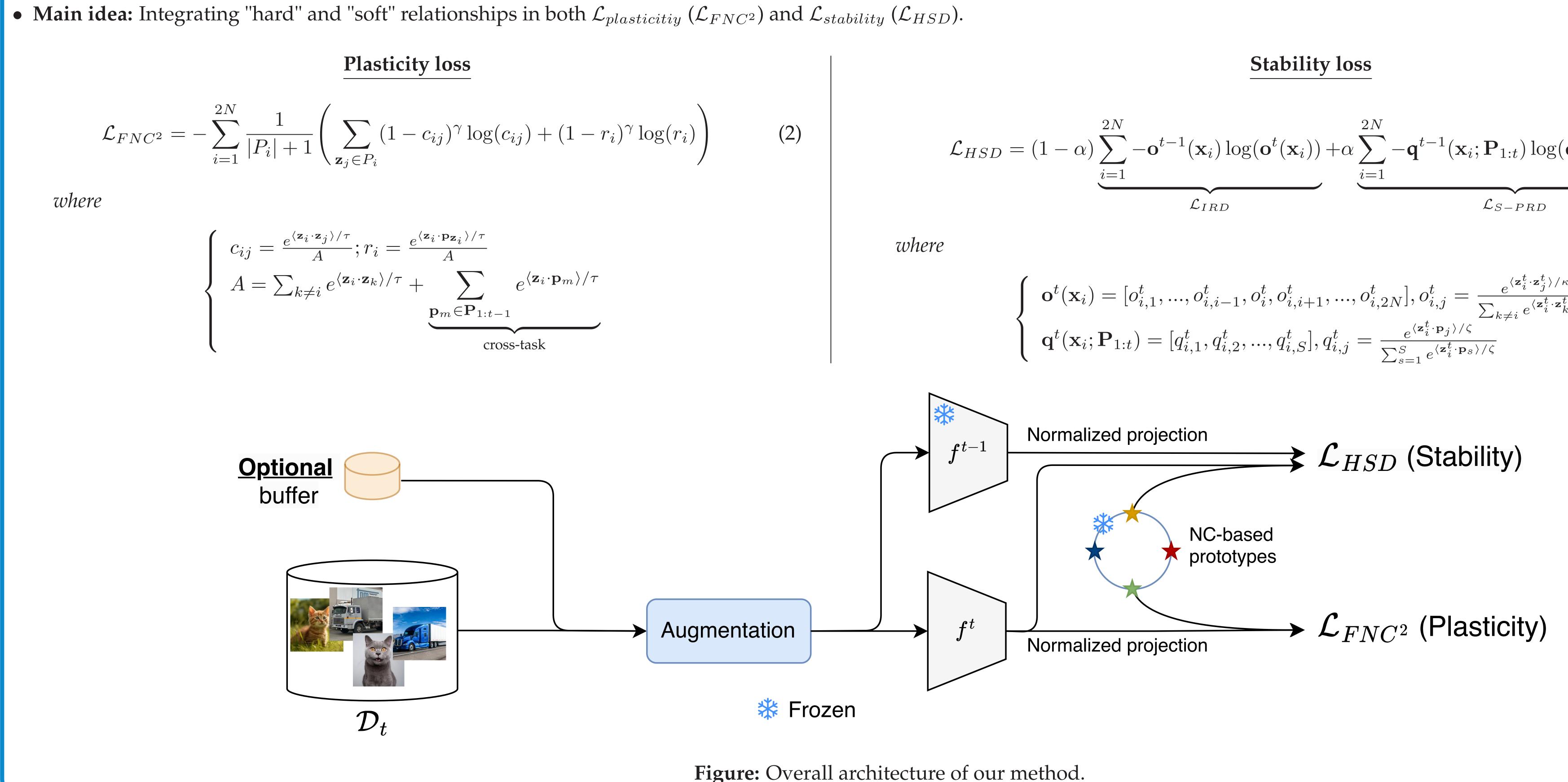
In preserving previous knowledge:

- "Hard" stability hinders the learning of new knowledge when starting training a new task.
- "Soft" stability diminishes its effectiveness as training progresses.



²ETIS - CY Cergy Paris University, ENSEA, CNRS, France

PROPOSED METHOD



RESULTS

• Both \mathcal{L}_{FNC^2} and \mathcal{L}_{HSD} show effectiveness, especially when they are combined concur-• By exploring both hard and soft relationships in NC-based CL, we achieve SoTA performance in memory-free settings while remaining competitive with limited buffer size scerently narios.

Buffer	Dataset	Seq-Cifar-10		Seq-Cifar-100		Seq-Tiny-ImageNet	
	Scenario	Class-IL	Task-IL	Class-IL	Task-IL	Class-IL	Task-IL
0	Co ² L (ICCV'21)[2]	58.89±2.61	86.65±1.05	26.89±0.78	51.91±0.63	$13.43 {\pm} 0.57$	40.21±0.68
	Ours	69.26±0.32	94.41±0.43	32.57±0.55	57.87±0.62	$14.54{\pm}0.52$	43.81±0.47
200	iCaRL (CVPR'17) [3]	49.02±3.20	88.99±2.13	28.00±0.91	51.43 ± 1.47	7.53±0.79	28.19±1.47
	DER (NeurIPS'20)[1]	61.93±1.79	91.40±0.92	31.23±1.38	63.09±1.09	$11.87 {\pm} 0.78$	40.22 ± 0.67
	Co ² L (ICCV'21)[2]	65.57±1.37	93.43±0.78	$27.38 {\pm} 0.85$	$53.94{\pm}0.76$	$13.88 {\pm} 0.40$	$42.37 {\pm} 0.74$
	GCR (CVPR'22)[4]	64.84±1.63	90.80±1.05	33.69 ± 1.40	64.24±0.83	$13.05 {\pm} 0.91$	42.11 ± 1.01
	CILA (ICML'24)[5]	67.06±1.59	94.29±0.24	-	-	$14.55 {\pm} 0.39$	$44.15 {\pm} 0.70$
	Ours	72.63±0.78	95.31±0.32	34.04±0.42	$59.46 {\pm} 0.65$	15.52±0.53	44.59±0.72

Table: Results of our method compared with other supervised baselines using the Average Accuracy (AA) metric.

CONTACT INFORMATION

Please see more details in our paper or by scanning the project QR code:

$$\mathcal{L}_{HSD} = (1 - \alpha) \underbrace{\sum_{i=1}^{2N} -\mathbf{o}^{t-1}(\mathbf{x}_i) \log(\mathbf{o}^t(\mathbf{x}_i))}_{\text{(IDD)}} + \alpha \underbrace{\sum_{i=1}^{2N} -\mathbf{q}^{t-1}(\mathbf{x}_i; \mathbf{P}_{1:t}) \log(\mathbf{q}^t(\mathbf{x}_i; \mathbf{P}_{1:t}))}_{\text{(IDD)}}$$
(3)

$$\begin{cases} \mathbf{o}^{t}(\mathbf{x}_{i}) = [o_{i,1}^{t}, ..., o_{i,i-1}^{t}, o_{i}^{t}, o_{i,i+1}^{t}, ..., o_{i,2N}^{t}], o_{i,j}^{t} = \frac{e^{\langle \mathbf{z}_{i}^{t} \cdot \mathbf{z}_{j}^{t} \rangle / \kappa}}{\sum_{k \neq i} e^{\langle \mathbf{z}_{i}^{t} \cdot \mathbf{z}_{k}^{t} \rangle / \kappa}} \\ \mathbf{q}^{t}(\mathbf{x}_{i}; \mathbf{P}_{1:t}) = [q_{i,1}^{t}, q_{i,2}^{t}, ..., q_{i,S}^{t}], q_{i,j}^{t} = \frac{e^{\langle \mathbf{z}_{i}^{t} \cdot \mathbf{p}_{j} \rangle / \zeta}}{\sum_{s=1}^{S} e^{\langle \mathbf{z}_{i}^{t} \cdot \mathbf{p}_{s} \rangle / \zeta}} \end{cases}$$

ABLATION STUDIES

Dlackick	Ctability	Buffer size			
Plasticity	Stability	0	200		
\mathcal{L}_{FNC^2}	X	53.59±0.63	53.62±0.81		
$\mathcal{L}^{asym}_{SupCon}$	×	53.25 ± 1.70	53.57 ± 1.03		
$\mathcal{L}^{asym}_{SupCon} \ \mathcal{L}^{asym}_{SupCon}$	\mathcal{L}_{IRD}	$58.89 {\pm} 2.61$	65.57 ± 1.37		
\mathcal{L}_{FNC^2}	\mathcal{L}_{IRD}	$63.65 {\pm} 0.55$	$70.54{\pm}0.95$		
\mathcal{L}_{FNC^2}	\mathcal{L}_{S-PRD}	$64.17 {\pm} 0.41$	$69.20 {\pm} 0.58$		
\mathcal{L}_{FNC^2}	\mathcal{L}_{HSD}	69.26±0.32	72.63±0.78		

Table: Performance comparison in Class-IL setting on the Seq-Cifar-10 dataset.

LIMITATIONS & FUTURE WORK

- Like other NC-inducing methods in CL, our approach is limited by the need to pre-define prototypes, which is impractical when the number of prototypes is unknown.
- Propose predefined maximum prototypes to address the need to know the exact number in advance.
- Explore alternative memory-free evaluation methods, as current approaches including Co^2L [2], CILA [5] rely on buffers, which are less effective with limited samples for old classes.
- Identify easily forgotten samples and focus on distilling only the core knowledge.