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CONTEXT
• In real-life situations, ML models need to learn continuously from non-stationary data.

• Human learning is adaptive, ongoing, and expands on previous knowledge.

• Current DNNs are learned in batches, requiring huge amount of data to retrain with new
classes.

• Challenge: Catastrophic forgetting (CF) problem.

• Models need to consider memory systems trade-off between storing old knowledge and ac-
quiring new one.

RELATED WORKS

Current prevalent approaches:

• Regularization-based (e.g.: Knowledge Distillation (KD)): Force the current model’s pa-
rameters to be sufficiently close to the past model.

• Replay or rehearsal based: A small portion of previous seen samples are stored and mixed
with current data

Different scenarios: Task-IL, Domain-IL, Class-IL, Data-IL
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Task boundary at testing

• In some settings, existing task boundaries can be provided or not to the model during train-
ing/test time.

• The construction of splits between tasks depends on different scenario.

PRELIMINARIES
• Supervised Contrastive Learning: Learning objectives tending to maximize similarity be-

tween representations of same-class samples while minimizing similarity between different-
class samples.
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• Neural Collapse: Behaviour of last layer features that collapse to their class means, aligned
with a simplex equiangular tight frame (ETF).
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HARD LEARNING & SOFT LEARNING
In learning new tasks:

• "Soft" learning relies solely on inter-sample relationships, which lead to representation drift
and overlap with new tasks.

• "Hard" learning focuses only on sample-prototype relationships, which can reduce diver-
sity, disrupt within-class data distribution, and lead to forgetting as older representations
shift towards current task prototypes.
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In preserving previous knowledge:

• "Hard" stability hinders the learning of new knowledge when starting training a new task.

• "Soft" stability diminishes its effectiveness as training progresses.
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PROPOSED METHOD
• Main idea: Integrating "hard" and "soft" relationships in both Lplasticitiy (LFNC2 ) and Lstability (LHSD).
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Figure: Overall architecture of our method.

RESULTS

• By exploring both hard and soft relationships in NC-based CL, we achieve SoTA perfor-
mance in memory-free settings while remaining competitive with limited buffer size sce-
narios.

Buffer
Dataset Seq-Cifar-10 Seq-Cifar-100 Seq-Tiny-ImageNet

Scenario Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

0
Co2L (ICCV’21)[2] 58.89±2.61 86.65±1.05 26.89±0.78 51.91±0.63 13.43±0.57 40.21±0.68

Ours 69.26±0.32 94.41±0.43 32.57±0.55 57.87±0.62 14.54±0.52 43.81±0.47

200

iCaRL (CVPR’17) [3] 49.02±3.20 88.99±2.13 28.00±0.91 51.43±1.47 7.53±0.79 28.19±1.47

DER (NeurIPS’20)[1] 61.93±1.79 91.40±0.92 31.23±1.38 63.09±1.09 11.87±0.78 40.22±0.67

Co2L (ICCV’21)[2] 65.57±1.37 93.43±0.78 27.38±0.85 53.94±0.76 13.88±0.40 42.37±0.74

GCR (CVPR’22)[4] 64.84±1.63 90.80±1.05 33.69±1.40 64.24±0.83 13.05±0.91 42.11±1.01

CILA (ICML’24)[5] 67.06±1.59 94.29±0.24 - - 14.55±0.39 44.15±0.70

Ours 72.63±0.78 95.31±0.32 34.04±0.42 59.46±0.65 15.52±0.53 44.59±0.72

Table: Results of our method compared with other supervised baselines using the Average
Accuracy (AA) metric.
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ABLATION STUDIES

• Both LFNC2 and LHSD show effectiveness, especially when they are combined concur-
rently.

Plasticity Stability Buffer size
0 200

LFNC2 ✗ 53.59±0.63 53.62±0.81
Lasym
SupCon ✗ 53.25±1.70 53.57±1.03

Lasym
SupCon LIRD 58.89±2.61 65.57±1.37

LFNC2 LIRD 63.65±0.55 70.54±0.95
LFNC2 LS−PRD 64.17±0.41 69.20±0.58
LFNC2 LHSD 69.26±0.32 72.63±0.78

Table: Performance comparison in Class-IL setting on the Seq-Cifar-10 dataset.

LIMITATIONS & FUTURE WORK
• Like other NC-inducing methods in CL, our approach is limited by the need to pre-define

prototypes, which is impractical when the number of prototypes is unknown.

• Propose predefined maximum prototypes to address the need to know the exact number in
advance.

• Explore alternative memory-free evaluation methods, as current approaches including Co2L
[2], CILA [5] rely on buffers, which are less effective with limited samples for old classes.

• Identify easily forgotten samples and focus on distilling only the core knowledge.


