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PROPOSED METHOD

e Main idea: Integrating "hard" and "soft" relationships in both L,;4sticitiy (Lrnez) and Lsiapitity (LHSD)-

PRELIMINARIES

o Supervised Contrastive Learning: Learning objectives tending to maximize similarity be-
tween representations of same-class samples while minimizing similarity between different-

CONTEXT

o In real-life situations, ML models need to learn continuously from non-stationary data.

e Human learning is adaptive, ongoing, and expands on previous knowledge. class samples. Plasticity loss Stability loss
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prototype corresponding to their class.
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e Models need to consider memory systems trade-oft between storing o. HARD LEARNING & SOFT LEARNING buffer ~ /
quiring new one. ]
In learning new tasks: NC-based
e "Soft" learning relies solely on inter-sample relationships, which lead to representation drift prototypes
and overlap with new tasks.
RELATED WORKS p ) i T~
Current prevalent approaches: e "Hard" learning focuses only on sample-prototype relationships, which can reduce diver- \ » Augmentation DAREEN B _ — L FNC?2 (P|aStiCity)
o o sity, disrupt within-class data distribution, and lead to forgetting as older representations L ) Normalized projection
e Regularization-based (e.g.: Knowledge Distillation (KD)): Force the current model’s pa- shift towards current task prototypes. /
rameters to be sufficiently close to the past model.
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e Replay or rehearsal based: A small portion of previous seen samples are stored and mixed

with current data . .
Figure: Overall architecture of our method.

Different scenarios: Task-IL, Domain-IL, Class-IL, Data-IL

RESULTS ABLATION STUDIES

Task 5

e By exploring both hard and soft relationships in NC-based CL, we achieve SOoTA perfor- o Both Lrne2 and Lrsp show effectiveness, especially when they are combined concur-

(O Old representations

Class Incremental Learning
¢ o o o 3? @ Current representations % NC-based prototypes mance in memory-free settings while remaining competitive with limited butfer size sce- rently.
In preserving previous knowledge: narios. py
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e "Hard" stability hinders the learning of new knowledge when starting training a new task. Dataset Seq-Cifar-10 Seq-Cifar-100 Seq-Tiny-ImageNet Plasticity ~ Stability 0 200
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ing/test time.

e The construction of splits between tasks depends on ditferent scenario.

Y Prototypes of task t
% Prototypes of task t-1

@ Representations at task t
(O Representations at task t-1
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Table: Results of our method compared with other supervised baselines using the Average
Accuracy (AA) metric.

LIMITATIONS & FUTURE WORK

e Like other NC-inducing methods in CL, our approach is limited by the need to pre-define
prototypes, which is impractical when the number of prototypes is unknown.
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